Seed Germination and Seedling Growth in Suaeda salsa (Linn.) Pall. (Amaranthaceae) Demonstrate Varying Salinity Tolerance among Different Provenances

Biology (Basel). 2023 Oct 18;12(10):1343. doi: 10.3390/biology12101343.

Abstract

Salinity is a pressing and widespread abiotic stress, adversely affecting agriculture productivity and plant growth worldwide. Seed germination is the most critical stage to seedling growth and establishing plant species in harsh environments, including saline stress. However, seed germination characteristics and stress tolerance may vary among geographical locations, such as various provenances. Suaeda salsa (Linn.) Pall. (S. salsa) is a halophytic plant that exhibits high salt tolerance and is often considered a pioneer species for the restoration of grasslands. Understanding the germination characteristics and stress tolerance of the species could be helpful in the vegetation restoration of saline-alkali land. In this study, we collected S. salsa seeds from seven different saline-alkali habitats (S1-S7) in the Songnen Plain region to assess the germination and seedling growth responses to NaCl, Na2CO3, and NaHCO3, and to observe the recovery of seed germination after relieving the salt stress. We observed significant differences in germination and seedling growth under three salt stresses and among seven provenances. Resistance to Na2CO3 and NaHCO3 stress was considerably higher during seedling growth than seed germination, while the opposite responses were observed for NaCl resistance. Seeds from S1 and S7 showed the highest tolerance to all three salt stress treatments, while S6 exhibited the lowest tolerance. Seeds from S2 exhibited low germination under control conditions, while low NaCl concentration and pretreatment improved germination. Ungerminated seeds under high salt concentrations germinated after relieving the salt stress. Germination of ungerminated seeds after the abatement of salt stress is an important adaptation strategy for black S. salsa seeds. While seeds from most provenances regerminated under NaCl, under Na2CO3 and NaHCO3, only seeds from S4 and S7 regerminated. These findings highlight the importance of soil salinity in the maternal environment for successful seed germination and seedling growth under various salinity-alkali stresses. Therefore, seed sources and provenance should be considered for vegetation restoration.

Keywords: ecological restoration; grassland; interpopulation; salinity stress; seed germination; seedling growth.