The modular biochemical reaction network structure of cellular translation

NPJ Syst Biol Appl. 2023 Oct 26;9(1):52. doi: 10.1038/s41540-023-00315-3.

Abstract

Translation is an essential attribute of all living cells. At the heart of cellular operation, it is a chemical information decoding process that begins with an input string of nucleotides and ends with the synthesis of a specific output string of peptides. The translation process is interconnected with gene expression, physiological regulation, transcription, and responses to signaling molecules, among other cellular functions. Foundational efforts have uncovered a wealth of knowledge about the mechanistic functions of the components of translation and their many interactions between them, but the broader biochemical connections between translation, metabolism and polymer biosynthesis that enable translation to occur have not been comprehensively mapped. Here we present a multilayer graph of biochemical reactions describing the translation, polymer biosynthesis and metabolism networks of an Escherichia coli cell. Intriguingly, the compounds that compose these three layers are distinctly aggregated into three modes regardless of their layer categorization. Multimodal mass distributions are well-known in ecosystems, but this is the first such distribution reported at the biochemical level. The degree distributions of the translation and metabolic networks are each likely to be heavy-tailed, but the polymer biosynthesis network is not. A multimodal mass-degree distribution indicates that the translation and metabolism networks are each distinct, adaptive biochemical modules, and that the gaps between the modes reflect evolved responses to the functional use of metabolite, polypeptide and polynucleotide compounds. The chemical reaction network of cellular translation opens new avenues for exploring complex adaptive phenomena such as percolation and phase changes in biochemical contexts.

MeSH terms

  • Ecosystem*
  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Metabolic Networks and Pathways / genetics
  • Polymers / metabolism
  • Signal Transduction

Substances

  • Polymers