Robust Representation Learning for Power System Short-Term Voltage Stability Assessment Under Diverse Data Loss Conditions

IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6035-6047. doi: 10.1109/TNNLS.2023.3325542. Epub 2024 May 2.

Abstract

With the help of neural network-based representation learning, significant progress has been recently made in data-driven online dynamic stability assessment (DSA) of complex electric power systems. However, without sufficient attention to diverse data loss conditions in practice, the existing data-driven DSA solutions' performance could be largely degraded due to practical defective input data. To address this problem, this work develops a robust representation learning approach to enhance DSA performance against multiple input data loss conditions in practice. Specifically, focusing on the short-term voltage stability (SVS) issue, an ensemble representation learning scheme (ERLS) is carefully designed to achieve data loss-tolerant online SVS assessment: 1) based on an efficient data masking technique, various missing data conditions are handled and augmented in a unified manner for lossy learning dataset preparation; 2) the emerging spatial-temporal graph convolutional network (STGCN) is leveraged to derive multiple diversified base learners with strong capability in SVS feature learning and representation; and 3) with massive SVS scenarios deeply grouped into a number of clusters, these STGCN-enabled base learners are distinctly assembled for each cluster via multilinear regression (MLR) to realize ensemble SVS assessment. Such a divide-and-conquer ensemble strategy results in highly robust SVS assessment performance when faced with various severe data loss conditions. Numerical tests on the benchmark Nordic test system illustrate the efficacy of the proposed approach.