Biomass carbon sink stability of conifer and broadleaf boreal forests: differently associated with plant diversity and mycorrhizal symbionts?

Environ Sci Pollut Res Int. 2023 Nov;30(54):115337-115359. doi: 10.1007/s11356-023-30445-4. Epub 2023 Oct 26.

Abstract

Forest biomass carbon stability is crucial in achieving carbon neutrality in the high-latitude northern hemisphere, and identifying the differences among forest types and decoupling their associations with plant traits and geoclimatic conditions is the basis for precise forest management. We conducted a large-scale field survey in state-owned forest areas in northeastern China, covering a total of 280,000 km2 forest area, 1275 arbor plots (30 m × 30 m), 5285 shrub plots (5 m × 5 m), and 7076 herb plots (1 m × 1 m). We hypothesized that the conifer and broadleaf forest differences in biomass carbon (C) storage and stability (environmental stability to climatic changes-ES and recalcitrant stability to be decomposed-RS) are associated with mycorrhizal abundance (EcM: ectomycorrhizal, AM: arbuscular mycorrhizal, NM-AM: non-mycorrhizal or arbuscular mycorrhizal), taxon diversity traits (richness, Simpson, Shannon-Wiener, and evenness), and structural differences (diameter, height, and density) in the arbor, shrub, and herb layers. Our results showed that (1) conifer forests had 13.1 Mg/ha higher C stocks and 30.9% higher RS, but 8.6% lower ES than broadleaf forests (p < 0.05). Trees in conifer forests had 1.5 m taller and 2.4 cm thicker trees, but 15% less tree density than those in broadleaf forests. Herbs in conifer forests were 14% shorter and 57% denser than in broadleaf forests. (2) The abundance of EcM-symbiont trees in conifer forests was 15% higher than in broadleaf forests, while their EcM-symbiont shrubs and AM-symbiont herbs were 5-6% lower (p < 0.05). Broadleaf forests had 7% higher tree richness and 19% higher herb richness but 9% lower shrub richness than conifer forests (p < 0.05). Tree and herb evenness was 5-6% higher in conifer forests (p < 0.05). (3) Variations of biomass C sink traits could be explained more by plant diversity in conifer forests (7%) than in broadleaf forests (3.4%). Mycorrhizal symbionts could explain more in broadleaf forests (9.7%) than conifer forests (6.7%). In conifer forests, fewer EcM trees (higher AM trees) and AM herbs, higher tree richness were accompanied by higher biomass C storage and ES. Broadleaf forests underwent similar changes, characterized by an elevation in both RS and ES. (4) Our research emphasized that variations in carbon sequestration between conifer and broadleaf forests could be attributed to mycorrhizal symbionts and species diversity besides tree size-related structural differences. Our findings support the precise management of boreal forests to achieve carbon neutrality based on leaf blade types, plant diversity, and mycorrhizal symbionts.

Keywords: Arbor–shrub–herb layers; Environmental stability; Forest biomass C storage; Geoclimatic conditions; Northeast China; Recalcitrant stability.

MeSH terms

  • Biomass
  • Carbon
  • Carbon Sequestration
  • Forests
  • Mycorrhizae*
  • Plants
  • Soil
  • Taiga
  • Tracheophyta*
  • Trees

Substances

  • Carbon
  • Soil