Toughening Brittle Bio-P3HB with Synthetic P3HB of Engineered Stereomicrostructures

Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202311264. doi: 10.1002/anie.202311264. Epub 2023 Nov 7.

Abstract

Poly(3-hydroxybutyrate) (P3HB), a biologically produced, biodegradable natural polyester, exhibits excellent thermal and barrier properties but suffers from mechanical brittleness, largely limiting its applications. Here we report a mono-material product design strategy to toughen stereoperfect, brittle bio or synthetic P3HB by blending it with stereomicrostructurally engineered P3HB. Through tacticity ([mm] from 0 to 100 %) and molecular weight (Mn to 788 kDa) tuning, high-performance synthetic P3HB materials with tensile strength to ≈30 MPa, fracture strain to ≈800 %, and toughness to 126 MJ m-3 (>110× tougher than bio-P3HB) have been produced. Physical blending of the brittle P3HB with such P3HB in 10 to 90 wt % dramatically enhances its ductility from ≈5 % to 95-450 % and optical clarity from 19 % to 85 % visible light transmittance while maintaining desirably high elastic modulus (>1 GPa), tensile strength (>35 MPa), and melting temperature (160-170 °C). This P3HB-toughening-P3HB methodology departs from the traditional approach of incorporating chemically distinct components to toughen P3HB, which hinders chemical or mechanical recycling, highlighting the potential of the mono-material product design solely based on biodegradable P3HB to deliver P3HB materials with diverse performance properties.

Keywords: Biodegradable Polymer; Mono-Material Product Design; P3HB Blend; Poly(3-Hydroxybutyrate); Stereomicrostructure.