Donor-π-Acceptor Porphyrin-Assisted Bifunctional Defect Passivation for Enhanced Temporal Domain-/Wavelength-Dependent Nonlinear Absorption Properties in Perovskite Films

ACS Appl Mater Interfaces. 2023 Oct 25. doi: 10.1021/acsami.3c12354. Online ahead of print.

Abstract

Perovskite layer defects are a primary inhibiting factor for their optical nonlinearity, which restricts their use in nonlinear photonics devices. Nevertheless, due to the variety of defect types, the passivation and repair of these defects remain challenging. Herein, a novel bifunctional passivation strategy was proposed, and the porphyrin with a donor-π-acceptor structure was designed to bifunctionally repair perovskite defects by linking different types of functional groups via acetylenic π-conjugated linkage bridges on both sides, thus improving the nonlinear optical (NLO) absorption properties of porphyrin-perovskite hybrid materials. Research results indicate that the amino and carboxyl groups of porphyrins endow the ability to bifunctionally passivate charged defects via effective coordination interactions. The nonlinear absorption properties of all porphyrin-passivated MAPbI3 films were remarkably enhanced compared to that of the MAPbI3 film across multiple wavelengths and temporal domains. Particularly, the Por3-passivated perovskite film (MAPbI3/Por3) exhibited optimized strongest NLO performance, including reverse saturable absorption (RSA) under 800 nm femtosecond (fs) and 1064 nm nanosecond (ns) laser irradiations, as well as saturable absorption (SA) with 515 and 532 nm ns laser excitations. The value of the NLO absorption coefficient (β = 266.23 cm GW-1) is 1 order of magnitude higher than that of the pristine perovskite film (β = 12.93 cm GW-1), also outperforming other porphyrin-passivated perovskite films and some reported materials. The bifunctional passivation mechanism of porphyrin not only intensifies the perovskite's photoinduced ground-state dipole moment in the two-photon absorption (TPA) process and the free carrier absorption ability to deepen the RSA properties under 800 nm fs and 1064 nm ns lasers, respectively, but also enables the improvement of SA responses under 515 nm fs and 532 nm ns lasers by expediting the Pauli blocking effect of perovskite. Our study offers a viable paradigm, which aims at exploiting high-performance NLO perovskite materials across wide spectral regions and time scales.

Keywords: bifunctional passivation; optical absorption nonlinearity; perovskite; porphyrin; temporal domain dependence; wavelength dependence.