Transforming Hetera-Buckybowls into Chiral Conjugated Polycycles Incorporating Epoxycyclooctadiene: a Two-Step Approach

Chemistry. 2023 Dec 22;29(72):e202303085. doi: 10.1002/chem.202303085. Epub 2023 Nov 7.

Abstract

Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.

Keywords: Chiral π-conjugated polycycles; Hetera-buckybowls; cascade reaction; metal ion-dependence; two-step synthesis.