Spatial correspondence in relative space regulates serial dependence

Sci Rep. 2023 Oct 24;13(1):18162. doi: 10.1038/s41598-023-45505-5.

Abstract

Our perception is often attracted to what we have seen before, a phenomenon called 'serial dependence.' Serial dependence can help maintain a stable perception of the world, given the statistical regularity in the environment. If serial dependence serves this presumed utility, it should be pronounced when consecutive elements share the same identity when multiple elements spatially shift across successive views. However, such preferential serial dependence between identity-matching elements in dynamic situations has never been empirically tested. Here, we hypothesized that serial dependence between consecutive elements is modulated more effectively by the spatial correspondence in relative space than by that in absolute space because spatial correspondence in relative coordinates can warrant identity matching invariantly to changes in absolute coordinates. To test this hypothesis, we developed a task where two targets change positions in unison between successive views. We found that serial dependence was substantially modulated by the correspondence in relative coordinates, but not by that in absolute coordinates. Moreover, such selective modulation by the correspondence in relative space was also observed even for the serial dependence defined by previous non-target elements. Our findings are consistent with the view that serial dependence subserves object-based perceptual stabilization over time in dynamic situations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Space Perception* / physiology
  • Time
  • Visual Perception* / physiology