Pathways for regions to achieve carbon emission peak: New insights from the four economic growth poles in China

Sci Total Environ. 2024 Jan 10:907:167979. doi: 10.1016/j.scitotenv.2023.167979. Epub 2023 Oct 22.

Abstract

Regional synergy is critical to achieving High Quality Development (HQD) and reducing emissions in China. Economic growth poles (EGPS), namely Beijing-Tianjin-Hebei, the Yangtze River Delta, Guangdong-Hong Kong-Macao, and Cheng-Yu, are typical examples of regional synergy in China. It is critical to explore whether the pulling power of the EGPS to other regions can accelerate China's carbon peaking. First, this study applies the Miller-Round model to measure the spillover effects of the EGPS and selects the radiation-driven areas. Second, based on the environmental Kuznets curve hypothesis, a panel smoothing transformation model is applied to explore the relationship between regional HQD and carbon emissions. Finally, under different scenarios, the inter-regional spillover effect is used to explore the path to achieving the carbon emissions peak. The results show an inverted U-shaped relationship between carbon emissions and HQD. Additionally, with the spillover pull of the EGPS, the peak carbon emission time of all provinces is earlier by 1-6 years in different scenarios, and it can promote Ningxia, Qinghai, Gansu, Guizhou to achieve a carbon peak by 2030. However, the pulling effects of Shanxi, Shaanxi, Jilin, and Guangxi require further improvement. Therefore, the policy implications of increasing inter-regional production efficiency, improving innovation levels, and using renewable energy are proposed to improve the level of HQD, thus achieving a carbon peak. Moreover, improving the industrial linkage between the EGPS and other regions would also be effective. The industrial structure promotes the cultivation of the EGPS in Cheng-Yu and strengthens regional integration in the western region.

Keywords: Carbon emission peak; Economic growth poles; Environmental Kuznets curve; Miller-Round model; Panel smoothing transformation model; Spillover effect.