Using decoys and camera traps to estimate depredation rates and neonate survival

PLoS One. 2023 Oct 24;18(10):e0293328. doi: 10.1371/journal.pone.0293328. eCollection 2023.

Abstract

Ungulate neonates-individuals less than four weeks old-typically experience the greatest predation rates, and variation in their survival can influence ungulate population dynamics. Typical methods to measure neonate survival involve capture and radio-tracking of adults and neonates to discover mortality events. This type of fieldwork is invasive and expensive, can bias results if it leads to neonate abandonment, and may still have high uncertainty about the predator species involved. Here we explore the potential for a non-invasive approach to estimate an index for neonate survival using camera traps paired with decoys that mimic white-tailed deer (Odocoileus virginianus) neonates in the first month of life. We monitored sites with camera traps for two weeks before and after the placement of the neonate decoy and urine scent lure. Predator response to the decoy was classified into three categories: did not approach, approached within 2.5 m but did not touch the decoy, or physically touched the decoy; when conducting survival analyses, we considered these second two categories as dead neonates. The majority (76.3%) of the predators approached the decoy, with 51.1% initiating physical contact. Decoy probability of survival was 0.31 (95% CI = 0.22, 0.35) for a 30-day period. Decoys within the geographic range of American black bear (Ursus americanus) were primarily (75%) attacked by bears. Overall, neonate survival probability decreased as predator abundance increased. The camera-decoy protocol required about ½ the effort and 1/3 the budget of traditional capture-track approaches. We conclude that the camera-decoy approach is a cost-effective method to estimate a neonate survival probability index based on depredation probability and identify which predators are most important.

MeSH terms

  • Animals
  • Deer* / physiology
  • Humans
  • Infant, Newborn
  • Odorants
  • Predatory Behavior
  • Ursidae* / physiology

Supplementary concepts

  • Odocoileus virginianus

Grants and funding

The author(s) received no specific funding for this work.