Triangle Cl-Ag1 -Cl Sites for Superior Photocatalytic Molecular Oxygen Activation and NO Oxidation of BiOCl

Angew Chem Int Ed Engl. 2023 Dec 18;62(51):e202314243. doi: 10.1002/anie.202314243. Epub 2023 Nov 15.

Abstract

BiOCl photocatalysis shows great promise for molecular oxygen activation and NO oxidation, but its selective transformation of NO to immobilized nitrate without toxic NO2 emission is still a great challenge, because of uncontrollable reaction intermediates and pathways. In this study, we demonstrate that the introduction of triangle Cl-Ag1 -Cl sites on a Cl-terminated, (001) facet-exposed BiOCl can selectively promote one-electron activation of reactant molecular oxygen to intermediate superoxide radicals (⋅O2 - ), and also shift the adsorption configuration of product NO3 - from the weak monodentate binding mode to a strong bidentate mode to avoid unfavorable photolysis. By simultaneously tuning intermediates and products, the Cl-Ag1 -Cl-landen BiOCl achieved >90 % NO conversion to favorable NO3 - of high selectivity (>97 %) in 10 min under visible light, with the undesired NO2 concentration below 20 ppb. Both the activity and the selectivity of Cl-Ag1 -Cl sites surpass those of BiOCl surface sites (38 % NO conversion, 67 % NO3 - selectivity) or control O-Ag1 -O sites on a benchmark photocatalyst P25 (67 % NO conversion and 87 % NO3 - selectivity). This study develops new single-atom sites for the performance enhancement of semiconductor photocatalysts, and also provides a facile pathway to manipulate the reactive oxygen species production for efficient pollutant removal.

Keywords: Cl−Ag1−Cl; NO Oxidation; O2 Activation; Photocatalysis; Single Atom.