Targeting caspase pathway by novel N-Me aziridine derivatives for hepatocellular carcinoma drug discovery

J Biomol Struct Dyn. 2023 Oct 24:1-12. doi: 10.1080/07391102.2023.2274520. Online ahead of print.

Abstract

Azaheterocycles are three-membered rings, known as aziridines, that occur naturally and have pharmaceutical applications.These compounds are present as several secondary metabolites produced by plants and microorganisms.Recent studies have demonstrated the effectiveness of aziridine derivatives (N-H/N-Me) as anticancer agents.We synthesized 18 compounds containing an N-Me enone aziridine group, the chemistry of which has been previously published. However, these compounds have drug-likeness properties; therefore, we aimed to demonstrate their drug-like properties using in silico and in vitro investigations.The molecular structures of the compounds were optimized using density functional theory (DFT). The ADMET parameters of the derivatives were calculated using SwissADME and PreADMET. Additionally, these derivatives were evaluated for their ability to bind to caspase-3 and caspase-9 and then subjected to molecular docking. The lead chemical AY128 maintained stable complexes with target proteins during molecular dynamics simulations, as evidenced by the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) parameters. In vitro cytotoxicity and ELISA tests showed that the novel aziridine derivatives, especially AY128, had strong anticancer activity against HepG2 hepatocellular carcinoma cells.Our study suggests that AY128 may be a potential drug candidate for hepatocellular carcinoma through the caspase-3 and caspase-9-dependent apoptotic pathways.Communicated by Ramaswamy H. Sarma.

Keywords: Enone aziridines; caspase; hepatocellular carcinoma; molecular docking; molecular dynamic simulations.