Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward

bioRxiv [Preprint]. 2023 Oct 10:2023.10.09.561557. doi: 10.1101/2023.10.09.561557.

Abstract

During goal-directed navigation, "what" information, which describes the experiences occurring in periods surrounding a reward, can be combined with spatial "where" information to guide behavior and form episodic memories1,2. This integrative process is thought to occur in the hippocampus3, which receives spatial information from the medial entorhinal cortex (MEC)4; however, the source of the "what" information and how it is represented is largely unknown. Here, by establishing a novel imaging method, we show that the lateral entorhinal cortex (LEC) of mice represents key experiential epochs during a reward-based navigation task. We discover a population of neurons that signals goal approach and a separate population of neurons that signals goal departure. A third population of neurons signals reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning of the new reward location. Together, these results indicate the LEC provides a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the MEC. Such parallel representations are well-suited for generating episodic memories of rewarding experiences and guiding flexible and efficient goal-directed navigation5-7.

Publication types

  • Preprint