Investigating the Correlation between Force Output, Strains, and Pressure for Active Skeletal Muscle Contractions

ArXiv [Preprint]. 2023 Oct 9:arXiv:2310.06191v1.

Abstract

Experimental observations suggest that the force output of the skeletal muscle tissue can be correlated to the intra-muscular pressure generated by the muscle belly. However, pressure often proves difficult to measure through in-vivo tests. Simulations on the other hand, offer a tool to model muscle contractions and analyze the relationship between muscle force generation and deformations as well as pressure outputs, enabling us to gain insight into correlations among experimentally measurable quantities such as principal and volumetric strains, and the force output. In this work, a correlation study is performed using Pearson's and Spearman's correlation coefficients on the force output of the skeletal muscle, the principal and volumetric strains experienced by the muscle and the pressure developed within the muscle belly as the muscle tissue undergoes isometric contractions due to varying activation profiles. The study reveals strong correlations between force output and the strains at all locations of the belly, irrespective of the type of activation profile used. This observation enables estimation on the contribution of various muscle groups to the total force by the experimentally measurable principal and volumetric strains in the muscle belly. It is also observed that pressure does not correlate well with force output due to stress relaxation near the boundary of muscle belly.

Keywords: correlation; force output; pressure; principal strain; skeletal muscle; volumetric strain.

Publication types

  • Preprint