Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology

Chem Rev. 2023 Nov 8;123(21):12105-12134. doi: 10.1021/acs.chemrev.3c00305. Epub 2023 Oct 23.

Abstract

With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Power Supplies
  • Electronics
  • Humans
  • Technology
  • Wearable Electronic Devices*