Synergistic Interaction of Hyperbranched Polyglycerols and Cetyltrimethylammonium Bromide for Oil/Water Interfacial Tension Reduction: A Molecular Dynamics Study

J Phys Chem B. 2023 Nov 2;127(43):9356-9365. doi: 10.1021/acs.jpcb.3c01707. Epub 2023 Oct 23.

Abstract

Applying surfactants to reduce the interfacial tension (IFT) on water/oil interfaces is a proven technique. The search for new surfactants and delivery strategies is an ongoing research area with applications in many fields such as drug delivery through nanoemulsions and enhanced oil recovery. Experimentally, the combination of hyperbranched polyglycerol (HPG) with cetyltrimethylammonium bromide (CTAB) substantially reduced the observed IFT of oil/water interface, 0.9 mN/m, while HPG alone was 5.80 mN/m and CTAB alone IFT was 8.08 mN/m. Previous simulations in an aqueous solution showed that HPG is a surfactant carrier. Complementarily, in this work, we performed classical molecular dynamics simulations on combinations of CTAB and HPG with one aliphatic chain to investigate further the interaction of this pair in oil interfaces and propose the mechanism of IFT decrease. Basically, from our results, one can observe that the IFT reduction comes from a combination of effects that have not been observed for other dual systems: (i) Due to the CTAB-HPG strong interaction, a weakening of their specific and isolated interactions with the water and oil phases occurs. (ii) Aggregates enlarge the interfacial area, turning it into a less ordered interface. (iii) The spread of individual molecules charge profiles leads to the much lower interfacial tension observed with the CTAB+HPG systems.