Origami Polyhedra-Based Soft Multicellular Robots

Soft Robot. 2024 Apr;11(2):244-259. doi: 10.1089/soro.2023.0012. Epub 2023 Oct 23.

Abstract

The reconfigurable and modular method, and the adaptive morphology method are two main methodologies to achieve the multimodal robots. Basically, the former method mimics the biological multicellular systems, while the latter is mostly inspired by the multimodal animals. Herein inspired by the rhombic dodecahedron (RDD) origami model, a novel type of soft multicellular robots with multimodal locomotion is presented. Morphologically, the combinable and expandable three-dimensional (3D)-printed soft RDD cells are assembled into several typical patterns: in-line, cross shaped, oblong shaped, and parallelogra shaped. The kinematics based on the sequential monolithic deformations of soft RDDs is analyzed to generate multimodal locomotion: peristaltic crawling, two-anchor crawling, crawling with turning functions, and omnidirectional crawling through the propagating waves in two orthogonal directions. More encouragingly, without reorganizing the pattern or reshaping the morph, the in-line multicellular robots manifest excellent climbing abilities, where the built-in rhombic meshes alternately tighten and loosen the pole-like structures to provide the gripping forces reliably without sacrificing mobility. To wrap up, owing to the monolithic and hierarchical deformability, high reconfigurability, and 3D-printable manufacturability of the RDD, we anticipate that the soft multicellular robot can potentially manifest further contributions to the advanced robotics with embodied intelligence, such as task-oriented self-assembly robots, self-reconfigurable robotic systems, and goal-directed metamorphosis robots.

Keywords: multimodal locomotion; origami; soft crawling robot; soft modular robot; soft pole-climbing robot; soft robot.