Development and Quality Assurance of Multileaf Collimator (MLC) Auto-Feathering Junctions for Multi-Isocenter Supine Volumetric Modulated Arc Therapy (VMAT) Craniospinal Axis Irradiation on Halcyon

Cureus. 2023 Sep 20;15(9):e45640. doi: 10.7759/cureus.45640. eCollection 2023 Sep.

Abstract

Currently, there is a lack of methods and tools that efficiently evaluate the auto-feathering junctions created by multileaf collimator (MLCs) for supine volumetric modulated arc therapy (VMAT) craniospinal irradiation (CSI) plans. We have investigated the feasibility of stitching together multi-isocenter fluence maps to then analyze the feathered junctions for patient-specific quality assurance (QA). Furthermore, we investigated the capability of Halcyon for the treatment of CSI patients. Three patients, who previously underwent VMAT CSI treatment on TrueBeam (6-MV flattening filter-free (FFF)) for 36 Gy in 20 fractions were replanned for Halcyon. A multi-isocenter approach with only translational superior-inferior shifts was used for both platforms. Each isocenter consists of two full arcs with anterior avoidance sectors, ±5° collimator rotations between arcs, and 5-8 cm of overlapping MLC auto-feathering junctions. All plans were QA'd via electronic portal imaging device (EPID) portal dosimetry and analyzed with a gamma criteria of 3%/3 mm. A variety of plan quality metrics were analyzed to evaluate dose distributions to the target, doses to organs at risk (OARs), and integral dose to the patient. A MATLAB script was developed to stitch the calculated and measured fluence maps in order to perform patient-specific QA for the composite fluence. The Halcyon plans provided highly conformal and homogenous dose distributions to the entire CSI target, superior to the clinical TrueBeam plans, while sparing critical organs with significantly lower values of V10Gy and V18Gy by up to 2% and 2.5%, respectively. Qualitative depictions of vertical dose profiles from the stitched DICOM of the entire CSI target for both planned and delivered fluence maps demonstrated equivalency, with slightly lower average pass rates with Halcyon (97%) compared to TrueBeam (99.9%). This approach to stitch multiple measured versus calculated EPID fluence maps has shown to be a feasible and accurate method and will be helpful for comprehensive VMAT CSI QA on both platforms. Further implementation of this script will be used in examining dosimetric impacts of daily patient positioning errors at MLC auto-feathering junctions.

Keywords: halcyon; mlc auto-feathering; patient-specific qa; rapidarc; vmat csi.