Cell atlas of trabecular meshwork in glaucomatous non-human primates and DEGs related to tissue contract based on single-cell transcriptomics

iScience. 2023 Sep 22;26(11):108024. doi: 10.1016/j.isci.2023.108024. eCollection 2023 Nov 17.

Abstract

As the major channel of aqueous humor outflow, dysfunction of trabecular meshwork (TM) can lead to intraocular pressure elevating, which can trigger primary open-angle glaucoma (POAG). In this study, we use single-cell RNA sequencing (scRNA-seq) technique to build an atlas and further explore the spontaneous POAG and healthy macaques cellular heterogeneity associated with the dysfunction of TM contraction. We built the TM atlas, which identified 14 different cell types. In Beam A, Beam B, Beam C, and smooth muscle cell (SMC) cell types, we first found multiple genes associated with TM contraction (e.g., TPM1, ACTC1, TNNT1), determining their differential expression in the POAG and healthy groups. In addition, the microstructural alterations in TM of POAG non-human primates were observed, which was compact and collapsed. Thus, our study indicated that TPM1 may be a key target for regulating TM structure, contraction function, and resistance of aqueous humor outflow.

Keywords: Optometry; Transcriptomics.