Preparation and characterization of a novel nanocomposite based on MnCr-layered double oxide and CoFe2O4 spinel ferrite for methyl orange adsorption

Sci Rep. 2023 Oct 21;13(1):18006. doi: 10.1038/s41598-023-45136-w.

Abstract

Herein, the adsorption of methyl orange (MO), a dangerous anionic dye, from an aqueous solution was investigated using a novel magnetic nanocomposite adsorbent. A nanocomposite entitled manganese chromium-layered double oxide/cobalt spinel ferrite, (MnCr)-LDO5wt.%/CoFe2O4, which links the interlayer structural characteristics of layered double oxides (LDOs) with the magnetic properties of spinel ferrites (SFs) was synthesized using the eco-friendly co-precipitation technique. Determination of structural parameters, crystallite size, and micro-strain was done using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) was used to determine grain shape and size. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) to identify elements and oxidation states present in the prepared nanocomposite. Vibrating sample magnetometer (VSM) was utilized to examine the magnetic characteristic. A comprehensive comparative study about the effectiveness and durability of CoFe2O4 and (MnCr)5wt.%/CoFe2O4 as nanoadsorbents for MO was conducted. Numerous variables, including contact time, MO concentration, adsorbent dosage, and pH were tested for their effects on the adsorption removal percentages. The findings showed that the maximum removal percentage was 86.1% for 25 ppm of MO was for 0.1 g/100 mL of (MnCr)-LDO5wt.%/CoFe2O4 at pH = 3. Investigations of isotherms and kinetics were conducted under batch conditions. The Langmuir isotherm matched the experimental data, for both nanoadsorbents, quite well due to the homogeneous distribution of active sites. Adsorption kinetics data were found to be compatible with intra-particle diffusion and pseudo-second order models for CoFe2O4 and (MnCr)5wt.%/CoFe2O4, respectively. A total of five adsorption-desorption cycles were performed to determine the prepared adsorbents' recyclable nature.