Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a Hybrid Light-Matter System

Phys Rev Lett. 2023 Oct 6;131(14):143604. doi: 10.1103/PhysRevLett.131.143604.

Abstract

We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity as described by the open Tavis-Cummings model. In this hybrid light-matter system, the interplay between coherent and dissipative processes leads to superradiant pulses with a buildup of strong correlations, even for systems comprising hundreds to thousands of particles. A central feature of the mean-field dynamics is a self-reversal of two spin degrees of freedom due to an underlying time-reversal symmetry, which is broken by quantum fluctuations. We demonstrate a quench protocol that can maintain highly non-Gaussian states over long timescales. This general mechanism offers interesting possibilities for the generation and control of complex fluctuation patterns, as suggested for the improvement of quantum sensing protocols for dissipative spin amplification.