A motorized rotation mount for the switching of an optical beam path in under 20 ms using polarization control

Rev Sci Instrum. 2023 Jun 1;94(6):063201. doi: 10.1063/5.0139647.

Abstract

We present a simple motorized rotation mount for a half-wave plate that can be used to rapidly change the polarization of light. We use the device to switch a high power laser beam between different optical dipole traps in an ultracold atom experiment. The device uses a stepper motor with a hollow shaft, which allows a beam to propagate along the axis of the motor shaft, minimizing inertia and mechanical complexity. A simple machined adapter is used to mount the wave plate. We characterize the performance of the device, focusing on its capability to switch a beam between the output ports of a polarizing beam splitter cube. We demonstrate a switching time of 15.9(3) ms, limited by the torque of the motor. The mount has a reaction time of 0.52(3) ms and a rotational resolution of 0.45(4)°. The rotation is highly reproducible, with the stepper motor not missing a step in 2000 repeated tests over 11 h.