Selective Crystallization of Linkage Isomers, [RhIII(NCS)(SCN)5]3- and [RhIII(SCN)6]3-, to Investigate Structural Trans Influence and Thermal Stability

Inorg Chem. 2023 Nov 6;62(44):18098-18107. doi: 10.1021/acs.inorgchem.3c02292. Epub 2023 Oct 20.

Abstract

Linkage isomers of homoleptic complexes, [RhIII(SCN)6]3- and [RhIII(NCS)(SCN)5]3-, formed in aqueous solution were successfully separated by employing methyltriphenylphosphonium (MePPh3+) and 1-ethylquinolinium (EtQu+) ions as countercations, respectively. The single-crystal X-ray analysis of (MePPh3)3[RhIII(SCN)6] (1) indicated that all of the SCN- ligands coordinate to the RhIII ion by S atoms with an octahedral symmetry, where the average bond length of Rh-S is 2.374(7) Å. On the other hand, the RhIII ion of (EtQu)3[RhIII(NCS)(SCN)5]·H2O (2) is coordinated by five S atoms and one N atom of the SCN- ligands with a C4v symmetry. Structural trans influence was observed in the shorter bond length of Rh-S at the trans position of Rh-N. The Rh-S bond length is 2.3398(13) Å significantly shorter than those of 1 by ca. 0.04 Å, although DFT calculations based on the crystal structures indicated that the effective bond order of Rh-N is higher than those of Rh-S. Thermal stability examination by thermogravimetric and differential thermal analyses (TG/DTA) and IR spectroscopy indicated that the linkage isomerization of [RhIII(SCN)6]3- to [RhIII(NCS)(SCN)5]3- proceeded after melting around 174 °C. These results clearly indicate that [RhIII(NCS)(SCN)5]3- is thermodynamically more stable than [RhIII(SCN)6]3- in solid states, although further linkage isomerization hardly occurs.