Series of Cadmium-Organic Frameworks Based on Mixed Flexible and Rigid Ligands: Single-Crystal-to-Single-Crystal Transformations, Sorption, and Luminescence Properties

Inorg Chem. 2023 Nov 6;62(44):18087-18097. doi: 10.1021/acs.inorgchem.3c02277. Epub 2023 Oct 20.

Abstract

Here, we present a series of Cd(II) coordination polymers containing two types of ligands: sterically rigid terephthalate derivatives (bdc-NO22- and bdc-Br2-) and flexible bis(2-methylimidazolyl)propane (bmip). The combination of two types of ligands is used to obtain and characterize compounds by single crystal and powder X-ray diffraction, FT-IR, elemental analysis, and TGA. Guest exchange results in structural transformations. 2-fold interpenetrated 1·DMF and 2·DMF rapidly undergo to 4-fold interpenetrated 1·Et2O, 1·EtOH, and 1·H2O, or 2·Et2O, respectively. Also, changes in the coordinating numbers and length of the N,N'-donor bmip ligand were observed according to single crystal X-ray analysis. Activated guest-free compounds [Cd(bdc-NO2)(bmip)] (1) and [Cd(bdc-Br)(bmip)] (2) are shown to be porous with a BET surface area of 103 and 283 m2·g-1, respectively. Moreover, both compounds demonstrate gate-opening behavior of ethylene adsorption isotherms at low pressures (<1 bar) and highly selective adsorption of benzene over cyclohexane or lower alcohols. Also, both compounds demonstrate a strong dependence of the maximum of the photoluminescence emission on an excitation wavelength. As a result, the photoluminescence color changes from white to red and from blue to red through green and yellow for compounds 1 and 2, respectively, with excitation wavelength changing from 360 to 540 nm.