An unsupervised learning approach to identify immunoglobulin utilization patterns using electronic health records

Transfusion. 2023 Dec;63(12):2234-2247. doi: 10.1111/trf.17585. Epub 2023 Oct 20.

Abstract

Background: Managing Canada's immunoglobulin (Ig) product resource allocation is challenging due to increasing demand, high expenditure, and global shortages. Detection of groups with high utilization rates can help with resource planning for Ig products. This study aims to uncover utilization subgroups among the Ig recipients using electronic health records (EHRs).

Methods: The study included all Ig recipients (intravenous or subcutaneous) in Calgary from 2014 to 2020, and their EHR data, including blood inventory, recipient demographics, and laboratory test results, were analyzed. Patient clusters were derived based on patient characteristics and laboratory test data using K-means clustering. Clusters were interpreted using descriptive analyses and visualization techniques.

Results: Among 4112 recipients, six clusters were identified. Clusters 1 and 2 comprised 408 (9.9%) and 1272 (30.9%) patients, respectively, contributing to 62.2% and 27.1% of total Ig utilization. Cluster 3 included 1253 (30.5%) patients, with 86.4% of infusions administered in an inpatient setting. Cluster 4, comprising 1034 (25.1%) patients, had a median age of 4 years, while clusters 2-6 were adults with median ages of 46-60. Cluster 5 had 62 (1.5%) patients, with 77.3% infusions occurring in emergency departments. Cluster 6 contained 83 (2.0%) patients receiving subcutaneous Ig treatments.

Conclusion: The results identified data-driven segmentations of patients with high Ig utilization rates and patients with high risk for short-term inpatient use. Our report is the first on EHR data-driven clustering of Ig utilization patterns. The findings hold the potential to inform demand forecasting and resource allocation decisions during shortages of Ig products.

Keywords: electronic health records; immunoglobulin; unsupervised clustering; utilization patterns.

MeSH terms

  • Adult
  • Child, Preschool
  • Electronic Health Records*
  • Humans
  • Immunoglobulins
  • Inpatients
  • Unsupervised Machine Learning*

Substances

  • Immunoglobulins