TMS and neocortical neurons: an integrative review on the micro-macro connection in neuroplasticity

Jpn J Compr Rehabil Sci. 2023 Jan 28:14:1-9. doi: 10.11336/jjcrs.14.1. eCollection 2023.

Abstract

Tian D, Izumi S. TMS and neocortical neurons: an integrative review on the micro-macro connection in neuroplasticity. Jpn J Compr Rehabil Sci 2023; 14: 1-9. Neuroplasticity plays a pivotal role in neuroscience and neurorehabilitation as it bridges the organization and reorganization properties of the brain. Among the numerous neuroplastic protocols, transcranial magnetic stimulation (TMS) is a well-established non-invasive protocol to induce plastic changes in the brain. Here, we review the findings of four plasticity-inducing TMS protocols in the human motor cortex with relatively evident mechanisms: conventional repetitive TMS (rTMS), theta-burst stimulation (TBS), quadripulse stimulation (QPS) and paired associative stimulation (PAS). Based on the reviewed evidence and a preliminary TMS neurocytological model proposed in our previous report, we further integrate the neurophysiological evidence and plasticity rules of these protocols to present an updated micro-macro connection model between neocortical neurons and the neurophysiological evidence in TMS. This prototypical model will guide further efforts to understand the neural circuit of the motor cortex, the mechanisms of TMS, and the advance of neuroplasticity technologies and their outcomes.

Keywords: LTD; LTP; TMS; cortical neurons; neural plasticity.

Publication types

  • Review