Spiral-phase-objective for a compact spiral-phase-contrast microscopy

Opt Express. 2023 Oct 9;31(21):34391-34403. doi: 10.1364/OE.499376.

Abstract

Spiral-phase-contrast imaging, which utilizes a spiral phase optical element, has proven to be effective in enhancing various aspects of imaging, such as edge contrast and shadow imaging. Typically, the implementation of spiral-phase-contrast imaging requires the formation of a Fourier plane through a 4f optical configuration in addition to an existing optical microscope. In this study, we present what we believe to be a novel single spiral-phase-objective, integrating a spiral phase plate, which can be easily and simply applied to a standard microscope, such as a conventional objective. Using a new hybrid design approach that combines ray-tracing and field-tracing simulations, we theoretically realized a well-defined and high-quality vortex beam through the spiral-phase-objective. The spiral-phase-objective was designed to have conditions that are practically manufacturable while providing predictable performance. To evaluate its capabilities, we utilized the designed spiral-phase-objective to investigate isotropic spiral phase contrast and anisotropic shadow imaging through field-tracing simulations, and explored the variation of edge contrast caused by changes in the thickness of the imaging object.