100Gb/s coherent optical secure communication over 1000 km based on analog-digital hybrid chaos

Opt Express. 2023 Sep 25;31(20):33200-33211. doi: 10.1364/OE.499634.

Abstract

In recent years, the transmission capacity of chaotic secure communications has been greatly expanded by combining coherent detection and multi-dimensional multiplexing. However, demonstrations over 1000 km fiber are yet to be further explored. In this paper, we propose a coherent optical secure transmission system based on analog-digital hybrid chaos. By introducing an analog-digital converter (ADC) and a bit extraction into the feedback loop of entropy source, the broadband analog chaos is converted into a binary digital signal. This binary digital signal is then mapped to a 65536-level pulse amplitude modulation (PAM) signal and injected into the semiconductor laser (SL) to regenerate the analog chaos, forming a closed loop. The binary digital signal from the chaos source and the encrypted signal are transmitted via wavelength division multiplexing (WDM). By using conventional digital signal processing (DSP) algorithms and neural networks for post-compensation, long-haul high-quality chaotic synchronization and high-performance secure communication are achieved. In addition, the probability density distribution of the analog chaotic signal is effectively improved by adopting the additional higher-order mapping operation in the digital part of the chaos source. The proof-of-concept experimental results show that our proposed scheme can support the secure transmission of 100 Gb/s quadrature phase shift keying (QPSK) signals over 1000 km of standard single-mode fiber (SSMF). The decrypted bit error rate (BER) reaches 9.88 × 10-4, which is well below the 7% forward error correction (FEC) threshold (BER = 3.8 × 10-3). This research provides a potential solution for high-capacity long-haul chaotic optical communications and fills the gap in secure communications based on analog-digital hybrid chaos.