Automated solid phase DNA extraction on a lab-on-a-disc with two-degrees of freedom instrumentation

Anal Chim Acta. 2023 Nov 1:1280:341859. doi: 10.1016/j.aca.2023.341859. Epub 2023 Sep 30.

Abstract

Lab-on-a-disc (LoaD) technology has emerged as a transformative approach for point-of-care diagnostics and high-throughput testing. The promise of integrating multiple laboratory functions onto a single integrated platform has significant implications for healthcare, especially in resource-limited settings. However, one of the primary challenges faced in the design and manufacture of LoaD devices is the integration of effective valving mechanisms. These valves are essential for fluid control and routing, but their intricacy often leads to complexities in design and increased vulnerability to failure. This emphasizes the need for improved designs and manufacturing processes without complex, integrated valving mechanisms. (96) RESULTS: We describe a fully automated biological workflow and reagent actuation on a LoaD device without an integrated valving system. The Two Degrees-of-Freedom (2DoF) custom centrifuge alters the centre of rotation, facilitating fluid flow direction changes on the microfluidic platform through a custom programmed interface. A novel 360-degree fluid manipulation approach via secondary planetary gear motion enabled sequential assay reagent actuation without embedded valve triggering, with the addition of infinite incubation times and efficient use of platform realty. The simplified LoaD platform uses clever design, with intermediate flow chambers to avoid cross contamination between reagent steps. Notably, the optimized LoaD platform demonstrated a two-fold DNA yield at higher HEK-293 cell concentrations compared to commercially available spin-column kits. This significantly simplified LoaD platform successfully automated a common, complex workflow without inhibiting DNA purification. (129) SIGNIFICANCE: This system exhibits the clever coupling of both 2DoF and centrifugal microfluidics to create an autonomous testing package capable of eradicating the need for complex valving systems to automate biological workflows on LoaDs. This automated system has outperformed commercially available DNA extraction kits for higher cell counts. The platform's elimination of valve requirements ensures unlimited sample incubation times and enhances reliability, making it a straightforward option for automated biological workflows, particularly in diagnostics. (73).

Keywords: Automation; Centrifugal microfluidics; Lab-on-a-Disc; Nucleic acid.

MeSH terms

  • DNA*
  • HEK293 Cells
  • Humans
  • Lab-On-A-Chip Devices
  • Microfluidic Analytical Techniques*
  • Microfluidics
  • Point-of-Care Testing
  • Reproducibility of Results

Substances

  • DNA