Polyvalent s-block elements: A missing link challenges the periodic law of chemistry for the heavy elements

Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2303989120. doi: 10.1073/pnas.2303989120. Epub 2023 Oct 19.

Abstract

The Periodic Law of Chemistry is one of the great discoveries in cultural history. Elements behaving chemically similar are empirically merged in groups G of a Periodic Table, each element with G valence electrons per neutral atom, and with upper limit G for the oxidation and valence numbers. Here, we report that among the usually mono- or di-valent s-block elements (G = 1 or 2), the heaviest members (87Fr, 88Ra, 119E, and 120E) with atomic numbers Z = 87, 88, 119, 120 form unusual 5- or 6-valent compounds at ambient conditions. Together with well-reported basic changes of valence at the end of the 6d-series, in the whole 7p-series, and for 5g6f-elements, it indicates that at the bottom of common Periodic Tables, the classic Periodic Law is not as straightforward as commonly expected. Specifically, we predict the feasible experimental synthesis of polyvalent [RaL-n] (n = 4, 6) compounds.

Keywords: Periodic Table; polyvalent metalloids; relativistic quantum chemistry; s-block chemistry; spin–orbit effects.