Scale and detection method impacted Salmonella prevalence and diversity in ponds

Sci Total Environ. 2024 Jan 10:907:167812. doi: 10.1016/j.scitotenv.2023.167812. Epub 2023 Oct 16.

Abstract

Site-specific approaches for managing food safety hazards in agricultural water require an understanding of foodborne pathogen ecology. This study identified factors associated with Salmonella contamination in Virginia ponds. Grab samples (250 mL, N = 600) were collected from 30 sites across nine ponds. Culture- and culture-independent (CIDT)-based methods were used to detect Salmonella in each sample. Salmonella isolated by culture-based methods were serotyped by Kauffman-White classification. Environmental data were collected for each sample. McNemar's χ2 was used to determine if Salmonella detection differed by testing method. Separate mixed effect models were used to identify environmental factors associated with culture and CIDT-based Salmonella detection. Separate models were built for each pond, and for all ponds combined. Salmonella detection differed significantly (p < 0.001) between CIDT (31 %; 183/600)- and culture (13 %; 77/600)-based methods. Culture-based methods yielded 11 different serovars. All cultured Salmonella samples were confirmed by CIDT; 42.1 % of CIDT Salmonella-positive samples could be cultured. Associations between environmental factors and Salmonella detection also varied substantially by pond and detection method. In the all-pond model, associations were observed for five factors (total coliforms, Escherichia coli, air temperature, UV, rain) for both culture- and CIDT-based Salmonella detection. Rain prior to sampling (24 h) increased odds of Salmonella detection for culture (OR = 5.09) and CIDT (OR = 3.62) in the all-pond model. When all the pond data were used, models masked associations at the individual pond level, as there were noticeable differences between ponds and the odds of isolating Salmonella by environmental factors. Ponds were within a 187-ha area in this study, emphasizing water management needs to be individualized (i.e., assess hazards/risks by pond). Results also highlight detection methods and scale strongly affect observed water quality and should be considered when developing monitoring programs to develop guidance for growers.

Keywords: Culture-based methods; Culture-independent testing; Microbial water quality; Produce safety; Surface water.

MeSH terms

  • Agriculture
  • Escherichia coli
  • Ponds*
  • Prevalence
  • Salmonella*