Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells

Mol Pharm. 2024 Mar 4;21(3):1160-1169. doi: 10.1021/acs.molpharmaceut.3c00720. Epub 2023 Oct 18.

Abstract

Lymphatic vessels have received significant attention as drug delivery targets, as they shuttle materials from peripheral tissues to the lymph nodes, where adaptive immunity is formed. Delivery of immune modulatory materials to the lymph nodes via lymphatic vessels has been shown to enhance their efficacy and also improve the bioavailability of drugs when delivered to intestinal lymphatic vessels. In this study, we generated a three-compartment model of a lymphatic vessel with a set of kinematic differential equations to describe the transport of nanoparticles from the surrounding tissues into lymphatic vessels. We used previously published data and collected additional experimental parameters, including the transport efficiency of nanoparticles over time, and also examined how nanoparticle formulation affected the cellular transport mechanisms using small molecule inhibitors. These experimental data were incorporated into a system of kinematic differential equations, and nonlinear, least-squares curve fitting algorithms were employed to extrapolate transport coefficients within our model. The subsequent computational framework produced some of the first parameters to describe transport kinetics across lymphatic endothelial cells and allowed for the quantitative analysis of the driving mechanisms of transport into lymphatic vessels. Our model indicates that transcellular mechanisms, such as micro- and macropinocytosis, drive transport into lymphatics. This information is crucial to further design strategies that will modulate lymphatic transport for drug delivery, particularly in diseases like lymphedema, where normal lymphatic functions are impaired.

Keywords: endocytosis; immunotherapy; lymphatic endothelial cells (LECs); macropinocytosis; micropinocytosis; surface chemistry.

MeSH terms

  • Endothelial Cells
  • Lymph Nodes / metabolism
  • Lymphatic Vessels*
  • Nanoparticles*
  • Transcytosis