Coding Intrinsic Disorder into DNA Hybridization Probes Enables Discrimination of Single Nucleotide Variants over Wide and Tunable Temperature Ranges

Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202314386. doi: 10.1002/anie.202314386. Epub 2023 Oct 31.

Abstract

DNA hybridization probes are commonly used tools to discriminate clinically important single nucleotide variants (SNVs) but often work at elevated temperatures with very narrow temperature intervals (ΔT). Herein, we investigated the thermodynamic basis of the narrow ΔT both in silico and experimentally. Our study revealed that the high entropy penalty of classic hybridization probe designs was the key attributor for the narrow ΔT. Guided by this finding, we further introduced an entropy-compensate probe (Sprobe) design by coding intrinsic disorder into a stem-loop hybridization probe. Sprobe expanded ΔT from less than 10 °C to over 30 °C. Moreover, both ΔT and the optimal reaction temperature can be fine-tuned by simply altering the length of the loop domain. Sprobe was clinically validated by analyzing EGFR L858R mutation in 36 pairs of clinical tumor tissue samples collected from lung cancer patients, which revealed 100 % clinical sensitivity and specificity. We anticipate that our study will serve as a general guide for designing thermal robust hybridization probes for clinical diagnostics.

Keywords: Hybridization Probe; Intrinsic Disorder; Molecular Beacon; Molecular Diagnosis; Single Nucleotide Variants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Probes / genetics
  • Humans
  • Nucleic Acid Hybridization
  • Nucleotides*
  • Temperature
  • Thermodynamics

Substances

  • DNA Probes
  • Nucleotides