MosaiCatcher v2: a single-cell structural variations detection and analysis reference framework based on Strand-seq

Bioinformatics. 2023 Nov 1;39(11):btad633. doi: 10.1093/bioinformatics/btad633.

Abstract

Summary: Single-cell DNA template strand sequencing (Strand-seq) allows a range of various genomic analysis including chromosome length haplotype phasing and structural variation (SV) calling in individual cells. Here, we present MosaiCatcher v2, a standardized workflow and reference framework for single-cell SV detection using Strand-seq. This framework introduces a range of functionalities, including: an automated upstream Quality Control (QC) and assembly sub-workflow that relies on multiple genome assemblies and incorporates a multistep normalization module, integration of the single-cell nucleosome occupancy and genetic variation analysis SV functional characterization and of the ArbiGent SV genotyping modules, platform portability, as well as a user-friendly and shareable web report. These new features of MosaiCatcher v2 enable reproducible computational processing of Strand-seq data, which are increasingly used in human genetics and single-cell genomics, toward production environments. MosaiCatcher v2 is compatible with both container and conda environments, ensuring reproducibility and robustness and positioning the framework as a cornerstone in computational processing of Strand-seq data.

Availability and implementation: MosaiCatcher v2 is a standardized workflow, implemented using the Snakemake workflow management system. The pipeline is available on GitHub: https://github.com/friendsofstrandseq/mosaicatcher-pipeline/ and on the snakemake-workflow-catalog: https://snakemake.github.io/snakemake-workflow-catalog/?usage=friendsofstrandseq/mosaicatcher-pipeline. Strand-seq example input data used in the publication can be found in the Data availability statement. Additionally, a lightweight dataset for test purposes can be found on the GitHub repository.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Replication*
  • Genomics*
  • Haplotypes
  • Humans
  • Reproducibility of Results
  • Sequence Analysis, DNA
  • Single-Cell Analysis
  • Software
  • Workflow