Revealing the effect of phase and time coupling on NMR relaxation rate by random walks in phase space

Phys Rev E. 2023 Sep;108(3-1):034121. doi: 10.1103/PhysRevE.108.034121.

Abstract

Phase-time coupling is a natural process in the phase random walks of a spin system; however, its effect on the nuclear magnetic resonance (NMR) relaxation is a challenge to the established theories such as the second-order quantum perturbation theory. This paper extends the recently developed phase diffusion method to treat the phase-time coupling effect, based on uncoupled phase diffusions, and coupled random walks. The instantaneous projection of the rotating random field is employed to get the accumulated phase of the NMR observable. In the static frame and the rotating frame, the phase diffusion coefficients are derived. The obtained theoretical results show that the phase-time coupling has a significant impact on the NMR relaxation rate: The angular frequency ω in the spectral density is modified to an apparent angular frequency ηω, where η is the phase-time coupling constant. The strongest coupling has η equaling 2, while η equaling 1 corresponds to the traditional results. As an example, the modified relaxation time expressions based on both monoexponential and nonmonoexponential functions can successfully fit the previously reported ^{13}C T_{1} NMR experimental data of polyisobutylene (PIB) in the blend of PIB and head-to-head poly(propylene). In contrast, the traditional relaxation rate expression based on the monoexponential time correlation function cannot fit such experimental data. With the phase-time coupling, the obtained characteristic time of the segmental motion is faster than that from conventional results.