Biomonitoring and Biomathematical Modeling of Health Risks Associated with Dumpsite Grown Vegetables in Lagos State

Biol Trace Elem Res. 2024 Jul;202(7):3333-3348. doi: 10.1007/s12011-023-03903-w. Epub 2023 Oct 17.

Abstract

Conversion of dumpsites to farm lands in several communities is a usual practice in Nigeria. Wastes accumulate heavy metals in a variety of forms. This study assessed the concentration, degrees of contamination, and attendant health risk of heavy metals (HMs), using two major indigenous vegetables (Amaranthus viridis and Talinum triangulare) grown on five major dumpsites in Lagos state. After wet digestion, the mean concentrations of the HMs in the vegetable samples were evaluated using atomic absorption spectrophotometer (AAS). Daily intake of metals (DIM), target hazard quotient (THQ), and hazard index (HI) biomathematics were employed in the assessment of non-carcinogenic health risk. Incremental lifetime cancer risk (ILCR) assessment was used to assess carcinogenicity. The obtained result shows that the concentrations of HMs fell within the following ranges: (0.37 to 0.59), (0.07 to 1.36), (0.30 to 1.92), (0.00 to 0.03), and (0.00 to 0.04) mg/kg; for zinc (Zn), lead (Pb), Iron (Fe), cadmium (Cd), and chromium (Cr), respectively, with low to moderate variability. At Ikorodu dumping site, the Pb concentration was above the World Health Organization (WHO) permissible range and has the highest contamination factor. DIM for Pb was also above threshold values (> 1) in both adults and children, while the THQ values for Fe, Pb, and Cd were above 1 (> 1) in both adults and children. HI values for the vegetables exceeded WHO normal range (> 1), except Abule-Egba dumps' samples (70% HI greater than 1 in adults and 90% HI greater than 1 in children). Additionally, the ILCR values of above 50% of the samples were above the WHO (10-6) limits, with the highest value in children (Cd, 1.064 × 10-3) indicating high risk of carcinogenicity over a life time of exposure. Thus, the results revealed great health risk from consumption of vegetables from the four major dumping sites, with children being at greater risk.

Keywords: Cancer risk assessment; Health index; Pollution load index; Toxicological parameters.

MeSH terms

  • Biological Monitoring
  • Food Contamination / analysis
  • Humans
  • Metals, Heavy* / analysis
  • Nigeria
  • Risk Assessment
  • Vegetables* / chemistry

Substances

  • Metals, Heavy