αS1-Casein-Loaded Proteo-liposomes as Potential Inhibitors in Amyloid Fibrillogenesis: In Vivo Effects on a C. elegans Model of Alzheimer's Disease

ACS Chem Neurosci. 2023 Nov 1;14(21):3894-3904. doi: 10.1021/acschemneuro.3c00239. Epub 2023 Oct 17.

Abstract

According to the amyloid hypothesis, in the early phases of Alzheimer's disease (AD), small soluble prefibrillar aggregates of the amyloid β-peptide (Aβ) interact with neuronal membranes, causing neural impairment. Such highly reactive and toxic species form spontaneously and transiently in the amyloid building pathway. A therapeutic strategy consists of the recruitment of these intermediates, thus preventing aberrant interaction with membrane components (lipids and receptors), which in turn may trigger a cascade of cellular disequilibria. Milk αs1-Casein is an intrinsically disordered protein that is able to inhibit Aβ amyloid aggregation in vitro, by sequestering transient species. In order to test αs1-Casein as an inhibitor for the treatment of AD, it needs to be delivered in the place of action. Here, we demonstrate the use of large unilamellar vesicles (LUVs) as suitable nanocarriers for αs1-Casein. Proteo-LUVs were prepared and characterized by different biophysical techniques, such as multiangle light scattering, atomic force imaging, and small-angle X-ray scattering; αs1-Casein loading was quantified by a fluorescence assay. We demonstrated on a C. elegans AD model the effectiveness of the proposed delivery strategy in vivo. Proteo-LUVs allow efficient administration of the protein, exerting a positive functional readout at very low doses while avoiding the intrinsic toxicity of αs1-Casein. Proteo-LUVs of αs1-Casein represent an effective proof of concept for the exploitation of partially disordered proteins as a therapeutic strategy in mild AD conditions.

Keywords: Alzheimer disease; C. elegans; amyloid inhibition; drug delivery; intrinsic disordered protein; proteo-liposomes; αS1-Casein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / drug therapy
  • Alzheimer Disease* / metabolism
  • Amyloid / chemistry
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Caenorhabditis elegans
  • Caseins / pharmacology
  • Humans
  • Liposomes

Substances

  • Amyloid beta-Peptides
  • Liposomes
  • Caseins
  • Amyloid