Genomic and Evolutionary Characterization of Concurrent Intraductal Carcinoma and Adenocarcinoma of the Prostate

Cancer Res. 2024 Jan 2;84(1):154-167. doi: 10.1158/0008-5472.CAN-23-1176.

Abstract

Intraductal carcinoma of the prostate (IDC-P) is a lethal prostate cancer subtype that generally coexists with invasive high-grade prostate acinar adenocarcinoma (PAC) but exhibits distinct biological features compared with concomitant adenocarcinoma. In this study, we performed whole-exome, RNA, and DNA-methylation sequencing of IDC-P, concurrent invasive high-grade PAC lesions, and adjacent normal prostate tissues isolated from 22 radical prostatectomy specimens. Three evolutionary patterns of concurrent IDC-P and PAC were identified: early divergent, late divergent, and clonally distant. In contrast to those with a late divergent evolutionary pattern, tumors with clonally distant and early divergent evolutionary patterns showed higher genomic, epigenomic, transcriptional, and pathologic heterogeneity between IDC-P and PAC. Compared with coexisting PAC, IDC-P displayed increased expression of adverse prognosis-associated genes. Survival analysis based on an independent cohort of 505 patients with metastatic prostate cancer revealed that IDC-P carriers with lower risk International Society of Urological Pathology (ISUP) grade 1-4 adenocarcinoma displayed a castration-resistant free survival as poor as those with the highest risk ISUP grade 5 tumors that lacked concurrent IDC-P. Furthermore, IDC-P exhibited robust cell-cycle progression and androgen receptor activities, characterized by an enrichment of cellular proliferation-associated master regulators and genes involved in intratumoral androgen biosynthesis. Overall, this study provides a molecular groundwork for the aggressive behavior of IDC-P and could help identify potential strategies to improve treatment of IDC-P.

Significance: The genomic, transcriptomic, and epigenomic characterization of concurrent intraductal carcinoma and adenocarcinoma of the prostate deepens the biological understanding of this lethal disease and provides a genetic basis for developing targeted therapies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma* / genetics
  • Adenocarcinoma* / pathology
  • Carcinoma, Intraductal, Noninfiltrating* / genetics
  • Carcinoma, Intraductal, Noninfiltrating* / pathology
  • Genomics
  • Humans
  • Male
  • Neoplasm Grading
  • Prostate / pathology
  • Prostatic Neoplasms* / pathology