Sentient cells as basic units of tissues, organs and organismal physiology

J Physiol. 2023 Oct 17. doi: 10.1113/JP284419. Online ahead of print.

Abstract

Cells evolved some 4 billion years ago, and since then the integrity of the structural and functional continuity of cellular life has been maintained via highly conserved and ancient processes of cell reproduction and division. The plasma membrane as well as all the cytoplasmic structures are reproduced and inherited uninterruptedly by each of the two daughter cells resulting from every cell division. Although our understanding of the evolutionary emergence of the very first cells is obscured by the extremely long timeline since that revolutionary event, the generally accepted position is that the de novo formation of cells is not possible; all present cells are products of other prior cells. This essential biological principle was first discovered by Robert Remak and then effectively coined as Omnis Cellula e Cellula (every cell of the cell) by Rudolf Virchow: all currently living cells have direct structural and functional connections to the very first cells. Based on our previous theoretical analysis, all cells are endowed with individual sentient cognition that guides their individual agency, behaviour and evolution. There is a vital consequence of this new sentient and cognitive view of cells: when cells assemble as functional tissue ecologies and organs within multicellular organisms, including plants, animals and humans, these cellular aggregates display derivative versions of aggregate tissue- and organ-specific sentience and consciousness. This innovative view of the evolution and physiology of all currently living organisms supports a singular principle: all organismal physiology is based on cellular physiology that extends from unicellular roots.

Keywords: cell; cell physiology; cognition; consciousness; evolution; sentience.