Optically Anisotropic Mixed-Metal Fluoroiodate Ba2[GaF5(IO3F)] with a Wide Optical Transparent Window and a Moderate Birefringence

Inorg Chem. 2023 Oct 30;62(43):17691-17696. doi: 10.1021/acs.inorgchem.3c02213. Epub 2023 Oct 17.

Abstract

An optically anisotropic alkali-earth-metal gallium fluoroiodate, Ba2[GaF5(IO3F)] (1), was ingeniously obtained by integrating fluoride and fluoroiodate functional units under moderate hydrothermal conditions. It features a three-dimensional (3D) structure constructed by the highly polarizable fluoroiodate unit [IO3F] and the fluoride groups [GaOF5] and [BaO3Fx] (x = 6, 7). The compound is stable at temperatures up to 500 °C. With the synergistic interaction between [IO3F] and the fluoride groups, the mixed-metal fluoroiodate induces a short ultraviolet cutoff edge at about 230 nm, a medium measured birefringence of 0.068 @ 550 nm, and a wide optical transparent window (0.34-11.9 μm), indicating that 1 has potential applications as a birefringent material from near-UV to mid-infrared. Theoretical calculations prove that the optical characteristics of the compound are mainly attributed to [IO3F] and the fluoride functional groups. This work demonstrates that the presence of various specific functional groups in compounds will help to develop promising inorganic functional materials possessing good optical performance.