Biomechanical causes for failure of the Physiomesh/Securestrap system

Sci Rep. 2023 Oct 16;13(1):17504. doi: 10.1038/s41598-023-44940-8.

Abstract

This study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh in various directions and the strength of the mesh-tissue-staple junction. Ex-vivo experiments on porcine abdominal wall models were performed to observe the system's behavior under simulated intra-abdominal pressure load. Numerical simulations using finite element analysis were employed to support the experimental findings. The results reveal nonlinearity, anisotropy, and non-homogeneity in the mechanical properties of the Physiomesh, with stress concentration observed in the polydioxanone (PDO) stripe. The mesh-tissue junction exhibited inadequate fixation strength, leading to staple pull-out or breakage. The ex-vivo models demonstrated failure under higher pressure loads. Numerical simulations supported these findings, revealing the reaction forces exceeding the experimentally determined strength of the mesh-tissue-staple junction. The implications of this study extend beyond the specific case of the Physiomesh/Securestrap system, providing insights into the mechanics of implant-tissue systems. By considering biomechanical factors, researchers and clinicians can make informed decisions to develop improved implants that mimic the mechanics of a healthy abdominal wall. This knowledge can contribute to better surgical outcomes and reduce complications in abdominal hernia repair and to avoid similar failures in future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abdominal Wall* / surgery
  • Animals
  • Biomechanical Phenomena
  • Causality
  • Elastic Modulus
  • Hernia, Abdominal* / surgery
  • Herniorrhaphy / methods
  • Swine