Relationship between dietary macronutrients intake and biological aging: a cross-sectional analysis of NHANES data

Eur J Nutr. 2024 Feb;63(1):243-251. doi: 10.1007/s00394-023-03261-2. Epub 2023 Oct 16.

Abstract

Purpose: This study aimed to investigate the association between macronutrient intake and biological age.

Methods: Data were collected from 26,381 adults who participated in the United States National Health and Nutrition Examination Survey (NHANES). Two biological ages were estimated using the Klemera-Doubal method (KDM) and PhenoAge algorithms. Biological age acceleration (AA) was computed as the difference between biological age and chronological age. The associations between macronutrient intakes and AA were investigated.

Results: After fully adjusting for confounding factors, negative associations were observed between AA and fiber intake (KDM-AA: β - 0.53, 95% CI - 0.62, - 0.43, P < 0.05; PhenoAge acceleration: β - 0.30, 95% CI - 0.35, - 0.25, P < 0.05). High-quality carbohydrate intake was associated with decreased AA (KDM-AA: β - 0.57, 95% CI - 0.67, - 0.47, P < 0.05; PhenoAge acceleration: β - 0.32, 95% CI - 0.37, - 0.26, P < 0.05), while low-quality carbohydrate was associated with increased AA (KDM-AA: β 0.30, 95% CI 0.21, 0.38, P < 0.05; PhenoAge acceleration: β 0.16, 95% CI 0.11, 0.21, P < 0.05). Plant protein was associated with decreased AA (KDM-AA: β - 0.39, 95% CI - 0.51, - 0.27, P < 0.05; PhenoAge acceleration: β - 0.21, 95% CI - 0.26, - 0.15, P < 0.05). Long-chain SFA intake increased AA (KDM-AA: β 0.16, 95% CI 0.08, 0.24, P < 0.05; PhenoAge acceleration: β 0.11, 95% CI 0.07, 0.15, P < 0.05). ω-3 PUFA was associated with decreased KDM-AA (β - 0.18, 95% CI - 0.27, - 0.08, P < 0.05) and PhenoAge acceleration (β - 0.09, 95% CI - 0.13, - 0.04, P < 0.05).

Conclusion: Our findings suggest that dietary fiber, high-quality carbohydrate, plant protein, and ω-3 PUFA intake may have a protective effect against AA, while low-quality carbohydrate and long-chain SFA intake may increase AA. Therefore, dietary interventions aimed at modifying macronutrient intakes may be useful in preventing or delaying age-related disease and improving overall health.

Keywords: Biological aging; Cross-sectional study; Macronutrients; NHANES.

MeSH terms

  • Cross-Sectional Studies
  • Dietary Fats*
  • Dietary Fiber
  • Eating
  • Fatty Acids, Omega-3*
  • Nutrients
  • Nutrition Surveys
  • Plant Proteins
  • United States

Substances

  • Dietary Fats
  • Dietary Fiber
  • Fatty Acids, Omega-3
  • Plant Proteins