Structure and properties of metal-organic frameworks modulated by sulfate ions

Dalton Trans. 2023 Nov 7;52(43):15940-15949. doi: 10.1039/d3dt01995k.

Abstract

Anions play a significant role in the construction of metal-organic frameworks (MOFs). Anions can affect coordination between metal ions and organic ligands, and the formation of crystal structures, thereby affecting the structure and properties of MOFs. Two novel 3D porous MOFs ({[Cd3(TIPE)2(SO4)1.6(H2O)2.4]·2.8OH·6.2H2O}n (MOF-1) and {[Cd3(TIPE)2(SO4)3(H2O)2]·10H2O}n (MOF-2)) were successfully synthesized, by introducing SO42- to design and adjust their structure and properties, in which the sulfate ions not only participated in coordination but also played a bridging role. Both MOF-1 and MOF-2 exhibited high stability and strong fluorescence properties, and their fluorescence properties also changed compared to those of previously reported 2D nonporous MOF-3 ({[Cd2(TIPE)2Cl3(ACN)]·CdCl3·3H2O}n) with an identical ligand. They could also be used in combination with MOF-3 to distinguish between Fe3+ and Cr2O72- ions, due to a change in their fluorescence properties. In this work, the structure was reshaped by introducing sulfate ions, and the role and function of the sulfate ions in the structure were studied, providing a feasible idea for the design and precise regulation of MOFs.