MALDI-2 Mass Spectrometry for Synthetic Polymer Analysis

Macromolecules. 2023 Sep 22;56(19):7729-7736. doi: 10.1021/acs.macromol.3c01401. eCollection 2023 Oct 10.

Abstract

Synthetic polymers are ubiquitous in daily life, and their properties offer diverse benefits in numerous applications. However, synthetic polymers also present an increasing environmental burden through their improper disposal and subsequent degradation into secondary micro- and nanoparticles (MNPs). These MNPs accumulate in soil and water environments and can ultimately end up in the food chain, resulting in potential health risks. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has the potential to study localized biological or toxicological changes in organisms exposed to MNPs. Here, we investigate whether MALDI-2 postionization can provide a sensitivity enhancement in polymer analysis that could contribute to the study of MNPs. We evaluated the effect of MALDI-2 by comparing MALDI and MALDI-2 ion yields from polyethyleneglycol (PEG), polypropylene glycol (PPG), polytetrahydrofuran (PTHF), nylon-6, and polystyrene (PS). MALDI-2 caused a signal enhancement of the protonated species for PEG, PPG, PTHF, and nylon-6. PS, by contrast, preferentially formed radical ions, which we attribute to direct resonance-enhanced multiphoton ionization (REMPI). REMPI of PS led to an improvement in sensitivity by several orders of magnitude, even without cationizing salts. The improved sensitivity demonstrated by MALDI-2 for all polymers tested highlights its potential for studying the distribution of certain classes of polymers in biological systems.