Graphene-Based Analog of Single-Slit Electron Diffraction

Phys Rev B. 2023 Sep;108(12):10.1103/physrevb.108.125420. doi: 10.1103/physrevb.108.125420.

Abstract

This work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the K point. This observation and device concept may be used for building diffraction switches with versatile applicability.