Polydopamine modified cerium-based MOFs/ chitosan aerogel beads for the efficient phosphate removal

Chemosphere. 2023 Dec:345:140421. doi: 10.1016/j.chemosphere.2023.140421. Epub 2023 Oct 13.

Abstract

The metal organic frameworks (MOFs) are considered as the effective adsorbents for phosphate removal, while their ultrafine powders limit their practical application. In this study, we fabricate two chitosan (CS) gel beads added with different cerium-based MOFs and coated with PDA for phosphate adsorption. The MOFs doped in beads are CM1 and CM2, in which the Ce(III)/Ce(IV) ratio is 0.36 and 1.46, indicating CM2 is Ce(III) dominated and more suitable for phosphate removal. However, during the process of preparing gel beads, the mixture of chitosan and CM1/CM2 are added drop-by-drop to NaOH solution, leading to the decrease of Ce(III) contents in both of the two beads on account of oxidization. On this basis, in order to improve the phosphate uptake performance and enhance the mechanical strength, polydopamine (PDA) is applied to be coated on the outside. The adsorption capacities of CS-CM1 and CS-CM2 are no more than 20 mg/g higher than that of pure CS, which is also quite equal with the phosphate uptake of CS@PDA (63 mg/g). Due to the reduction of PDA, the content of Ce(III) increasing evidently in the two adsorbents. The maximum phosphate adsorption capacities are 146.8 mg/g and 114.8 mg/g for CS-CM1@PDA and CS-CM2@PDA, respectively. CS-CM2@PDA exhibits the largest treatment volume of ∼1166 BV in the fix-bed column study, much higher than that of CS-CM1@PDA (976 BV). The main reason is that Ce(III) could form binding with phosphate through ligand exchange and precipitation. Those inner-sphere interactions are much stronger than the electrostatic attraction between Ce(IV) and phosphate. Thus, due to this strong affinity, CS-CM2@PDA possessing a higher content of Ce(III) can capture phosphate more easier at low concentration. In summary, owing to reduction of PDA, the Cerium-based MOFs are successfully introduced in CS to realize excellent phosphate removal and exhibit a great prospect in application.

Keywords: Adsorption; Cerium-based MOFs; Chitosan; Phosphate; Polydopamine.

MeSH terms

  • Adsorption
  • Cerium* / chemistry
  • Chitosan* / chemistry
  • Kinetics
  • Metal-Organic Frameworks*
  • Phosphates / chemistry
  • Water Pollutants, Chemical* / chemistry

Substances

  • polydopamine
  • Phosphates
  • Cerium
  • Metal-Organic Frameworks
  • Chitosan
  • Water Pollutants, Chemical