Regioselective Synthesis of NO-Donor (4-Nitro-1,2,3-triazolyl)furoxans via Eliminative Azide-Olefin Cycloaddition

Molecules. 2023 Oct 7;28(19):6969. doi: 10.3390/molecules28196969.

Abstract

A facile and efficient method for the regioselective [3 + 2] cycloaddition of 4-azidofuroxans to 1-dimethylamino-2-nitroethylene under p-TSA catalysis affording (4-nitro-1,2,3-triazolyl)furoxans was developed. This transformation is believed to proceed via eliminative azide-olefin cycloaddition resulting in its complete regioselectivity. The developed protocol has a broad substrate scope and enables a straightforward assembly of the 4-nitro-1,2,3-triazole motif. Moreover, synthesized (4-nitro-1,2,3-triazolyl)furoxans were found to be capable of NO release in a broad range of concentrations, thus providing a novel platform for future drug design and related biomedical applications of heterocyclic NO donors.

Keywords: Griess assay; NO donors; cycloaddition; furoxan; nitrogen heterocycles; triazole.