Mitigating the Recrystallization of a Cold-Worked Cu-Al2O3 Nanocomposite via Enhanced Zener Drag by Nanocrstalline Cu-Oxide Particles

Nanomaterials (Basel). 2023 Oct 8;13(19):2727. doi: 10.3390/nano13192727.

Abstract

The strength of metals and alloys at elevated temperatures typically decreases due to the recovery, recrystallization, grain growth, and growth of second-phase particles. We report here a cold-worked Cu-Al2O3 composite did not recrystallize up to a temperature of 0.83Tm of Cu. The composite was manufactured through the internal oxidation process of dilute Cu-0.15 wt.% Al alloy and was characterized by transmission electron microscopy to study the nature of oxide precipitates. As a result of internal oxidation, a small volume fraction (1%) of Al2O3 particles forms. In addition, a high density of extremely fine (2-5 nm) Cu2O particles has been observed to form epitaxially within the elongated Cu grains. These finely dispersed second-phase Cu2O particles enhance the Zener drag significantly by three orders of magnitude as compared to Al2O3 particles and retain their original size and spacing at elevated temperatures. This limits the grain boundary migration and the nucleation of defect-free regions of different orientations and inhibits the recrystallization process at elevated temperatures. In addition, due to the limited grain boundary migration, a bundle of stacking faults appears instead of annealing twins. This investigation has led to a better understanding of how to prevent the recrystallization process of heavily deformed metallic material containing oxide particles.

Keywords: TEM; interfaces; microstructure; nanosized oxide dispersion; recrystallization.

Grants and funding

Funding for this project was provided by the Office of Naval Research (ONR) through the Naval Research Laboratory’s 6.1 Research Program.