Investigation of the Gas Permeation Properties Using the Volumetric Analysis Technique for Polyethylene Materials Enriched with Pure Gases under High Pressure: H2, He, N2, O2 and Ar

Polymers (Basel). 2023 Oct 7;15(19):4019. doi: 10.3390/polym15194019.

Abstract

Polyethylene (PE) is widely used as a gas-sealing material in packing films and gas transport pipes. A technique for evaluating the permeability of water-insoluble gases has recently been developed. This technique is a volumetric analysis that is used to calculate the gas permeability by measuring the gas uptake and diffusivity. With this technique, we investigated the permeability of pure gases, such as H2, He, N2, O2 and Ar, enriched under high pressure up to 9 MPa in low-density polyethylene (LDPE), ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE). The gas uptake showed a linear pressure-dependent behavior that followed Henry's law, and the diffusivity was independent of the pressure. Furthermore, the logarithmic diffusivity values of the five gases linearly decreased as their molecular kinetic diameters increased. The logarithmic solubility values linearly increased as the critical temperatures of the gases increased. The calculated permeability results were correlated with the volume fraction of the amorphous phase and the fractional free volume. This result newly showed that the amorphous phase was directly correlated to the fractional free volume.

Keywords: amorphous phase; fractional free volume; gas permeability; polyethylene; volumetric analysis technique.