Deiodinase Types 1 and 3 and Proinflammatory Cytokine Values May Discriminate Depressive Disorder Patients from Healthy Controls

J Clin Med. 2023 Sep 24;12(19):6163. doi: 10.3390/jcm12196163.

Abstract

Introduction: Depressive disorders are multifactorial diseases in that a variety of factors may play a role in their etiology, including inflammation and abnormalities in the thyroid hormone (TH) metabolism and levels. The purpose of this study was to evaluate iodothyronine deiodinases (DIOs) and DIO-interacting cytokines as possible biomarkers in the diagnosis of depressive disorders.

Methods: This study enrolled 73 patients diagnosed with recurrent depressive disorder (rDD) and 54 controls. The expressions of DIO1, DIO2, DIO3, IL1B, IL6, TNFA, and IFNG genes, encoding three types of DIOs (1, 2, and 3), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, were assessed using the polymerase chain reaction in blood cells and an enzymatic immunoassay method in serum. The levels of examined molecules between patients and controls were compared, and correlations and diagnostic values were evaluated.

Results: Lower levels of DIO2 and higher levels of IL1B, IL6, and TNFA were found in patients compared to controls. The protein concentrations of DIO1 and DIO2 were lower, while that of DIO3 was higher, in patients than in controls. Serum IL-1β, IL-6, and TNF-α were also higher in patients than in controls. The area under the curve (AUC) of the IL-1β, IL-6, DIO1, and DIO3 proteins was >0.7 for discriminating patients with rDD from controls.

Conclusions: The expressions of genes for DIO2, IL-1β, IL-6, and TNF-α may have a role in the estimation of processes present in depressive disorders. We can cautiously claim that DIO1 and DIO3 and pivotal cytokines, mainly IL-1β and IL-6, may play a role in depression diagnosis, and further studies are suggested to explain the exact role of these molecules in larger samples with more precise methods.

Keywords: biomarkers; cytokine; depressive disorder; iodothyronine deiodinase.